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Abstract 

Two complementary education datasets, one VR and one AR, are used to test whether standard machine-learning 

models can classify improvement in learning outcomes and predict survey-based composite scores with transparent, 

reproducible steps. Local-aware cleaning handles semicolon delimiters and comma decimals; duplicates are removed; 

categorical variables are one-hot encoded; continuous variables are standardized where appropriate; targets are 

never imputed. For the VR task, Logistic Regression, Random Forest, and MLP are trained on a stratified train–

validation–test split with probability calibration and decision-threshold tuning. Logistic Regression attains macro-

F1 = 0.622 and ROC-AUC = 0.642 on the held-out test set. Setting the operating threshold to t = 0.30 yields accuracy = 

0.692 and increases minority-class recall while maintaining stable macro-F1. For the AR task, ElasticNet, Random 

Forest, and Gradient Boosting are evaluated with 5×10 repeated cross-validation; ElasticNet achieves the lowest 

error with MAE = 1.812 ± 0.399. Model explanations indicate that access to VR equipment, habitual VR use, age, and 

weekly usage hours are the strongest correlations of improvement in the VR dataset, while ES subscales dominate 

prediction in the AR dataset. The approach emphasizes calibrated outputs, honest validation, and simple models that 

are easy to audit. A complete, reproducible Collab workflow with figures and tables accompanies the study to support 

classroom adoption and independent verification. Bottom line: linear methods with calibration suffice for VR 

classification, and shrinkage methods minimize error for AR prediction on correlated item sets. 

Keywords— AR, VR, learning analytics, logistic regression, elastic net, calibration, mixed effects. 

 

I. INTRODUCTION 

Immersive tools in education promise richer practice 

and feedback, yet evidence often hinges on bespoke 

prototypes, scarce hardware, and pipelines that others 

cannot reproduce (AlGerafi et al., 2023). Most 

evaluations also blend pedagogy and technology, which 

blurs what drives learning gains. A practical alternative 

is to treat AR and VR data as structured signals and test 

whether standard models can extract reliable 

predictions without exotic assumptions (Alizadeh et al., 

2021). This study analyzes two complementary 

datasets. The VR dataset contains a binary indicator of 

improvement alongside usage, access, and learner 

context (Virtual_Reality_In_Education_Dataset, n.d.). The 

AR dataset contains survey item responses that form 

composite scales such as ES, SE, and SD (Mangina, n.d.). 

Together they represent two common analytics tasks in 

education: classifying improvement from interaction 

and context and predicting validated scale totals from 

correlated items. 

Methodology follows simple, auditable steps. Local-

aware loading handles semicolon delimiters and comma 

decimals. Duplicates are removed. Categorical variables 

are one-hot encoded. Continuous variables are 

standardized where appropriate. For VR, models are 

trained on a stratified train–validation–test split with 

calibration and decision-threshold selection. For AR, 

models are evaluated with repeated cross-validation 
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and a check for clustering via mixed effects. Metrics 

emphasize macro-F1 and ROC-AUC for classification and 

MAE with uncertainty for regression. Feature 

attribution focuses on coefficients and permutation 

importances that domain experts can read. Results show 

that a calibrated linear boundary is sufficient for the VR 

task, while shrinkage handles the AR item structure 

best. Access to equipment and habitual use are the 

strongest correlations of improvement in the VR data. ES 

subscales dominate prediction in the AR data. The 

outcome is a compact baseline that others can rerun in 

Collab, extend with richer telemetry, and adopt in 

classrooms that lack headsets or large budgets. 

 

II. RELATED WORK 

Evidence on XR in education shows consistent but 

context-dependent gains (Kaplan et al., 2021). Meta-

analyses report medium positive effects for augmented 

reality across knowledge and cognitive outcomes, while 

also noting variability driven by task design, assessment 

type, and learner profile (Akçayır & Akçayır, 2017). 

Recent updates extend the synthesis over a decade, 

again finding benefits alongside design-sensitive 

moderators that can mute effects if alignment is poor 

(Allcoat et al., 2021). For virtual reality, a broad training 

meta-analysis similarly finds advantages over 

conventional methods but with substantial 

heterogeneity across hardware, fidelity, task–

technology fit, and study design. These reviews motivate 

model-based analyses that separate signal from setting 

(Badihi et al., 2022).  

Immersive VR is not uniformly superior to non-

immersive formats; learning often hinges on presence, 

motivation, and cognitive load (Poupard et al., 2025). 

Studies in controlled settings show that highly 

immersive displays can increase extraneous load and, in 

some cases, reduce learning relative to desktop 

simulations unless generative strategies are scaffolded. 

A recent systematic review of 200+ IVR studies maps 

design features and learning mechanisms and 

emphasizes that instructional choices, not the headset 

alone, govern outcomes (Makransky & Petersen, 2019). 

These findings justify predictive feature analyses that 

foreground access, usage intensity, and learner 

characteristics rather than treating “VR” as a single 

treatment (Petersen et al., 2022).  

Within learning analytics, the case for interpretable 

models is strong. Education stakeholders must trace 

predictions to levels they can change (Khosravi et al., 

2022). Recent work on explainable AI in education 

synthesizes approaches for transparent attribution and 

argues for human-centered explanations tied to 

pedagogy and policy (Sailer et al., 2024). In parallel, 

learning-analytics frameworks stress closing the loop 

from prediction to intervention, which shifts evaluation 

from leaderboard metrics to calibrated probabilities, 

operating points, and actionable features precisely the 

orientation adopted here.  

Method choices matter for credible claims. Cross-

validation on small or moderate samples can produce 

large error bars; repeated CV and reporting uncertainty 

are recommended to stabilize estimates (Varoquaux, 

2018). For classifiers used in screening, calibration and 

threshold selection affect downstream costs and should 

be reported alongside rank metrics. We reflect these 

guidelines by using repeated CV for regression, by 

sweeping thresholds and publishing confusion matrices 

for classification, and by preferring models whose 

attributions are stable under resampling (Silva Filho et 

al., 2023).  

In sum, literature positions XR effects real but design-

sensitive, call for transparent, decision-oriented 

analytics, and recommends uncertainty-aware 

validation. This study aligns with that arc: it treats VR as 

a prediction problem over access and engagement 

features, treats AR outcomes as a sparse linear signal 

over established subscales, and reports operating points 

and precision so results can guide concrete 

interventions and future A/B tests. 

 

III. DATA SETS 

3.1 VR Dataset 

Provenance and access: The 

Virtual_Reality_In_Education_Dataset on Kaggle contains 

Modified_Virtual_Reality_in_Education_Dataset.csv 

(5,000 rows, 10 variables per the listing). Accessed: Aug 

31, 2025. 

License: License not explicitly stated on the dataset 

page as of access date; use under Kaggle Terms for 

research; include attribution to the uploader and Kaggle. 

Cohort and period: Self-reported survey style VR-in-

education data; no collection window stated on page. 

Size and balance: After cleaning, N = [insert final N]. 

Target Improvement_in_Learning_Outcomes has 36.3% 

class 0 and 63.7% class 1 (post-split test set). 

Measures: Demographics (age, grade); access/usage 

(Usage_of_VR_in_Education, Access_to_VR_Equipment, 

Hours_of_VR_Usage_Per_Week); context 
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(Instructor_VR_Proficiency, 

Stress_Level_with_VR_Usage, 

Collaboration_with_Peers_via_VR). 

Preprocessing: UTF-8/UTF-8-SIG handling, numeric 

coercion, whitespace trimming, one-hot encoding for 

categorical variables, standardization for linear/MLP 

models; no target imputation. 

Splits: Stratified 70/15/15; validation used for 

calibration and threshold selection. 

3.2 AR dataset 

Provenance and access: ARETE "Pilot 3 — Research 

Data" (PBIS-AR) on Zenodo. Files include Pilot 3 Dutch 

Data Student Social Skills.csv and supporting codebooks. 

CC BY 4.0 license. 

Context: PBIS-AR pilot within ARETE H2020 project; 

xAPI telemetry and questionnaire data; public 

descriptor in Scientific Data clarifies collection windows 

and structure across pilots. 

Targets: ES_ALL_H, SE_ALL_H, SD_ALL_H totals 

(constructed if needed from ES*/SE*/SD* items). 

Preprocessing: Locale-aware CSV load (semicolon 

delimiters, comma decimals), filter Finished==1, 

duplicate removal, item coercion, composite 

construction, one-hot encoding of categorical variables, 

scaling for linear models. 

Validation:  5×10 repeated cross-validation for MAE; 5-

fold out-of-fold predictions for predicted-vs-actual plot; 

mixed-effects check with school/class random 

intercepts. 

IV. METHODOLOGY 

4.1 Preprocessing 

Data preprocessing followed a systematic pipeline to 

ensure consistency and analytical rigor. For AR data, 

locale-aware CSV loading was applied to accommodate 

semicolon delimiters and comma decimals, with UTF-8-

SIG encoding to avoid character corruption. Duplicates 

were removed, and incomplete entries were filtered 

using the criterion Finished==1. All datasets underwent 

numeric coercion and whitespace normalization. 

Categorical variables were transformed using one-hot 

encoding, while continuous features were standardized 

for compatibility with linear and MLP-based models. 

Missing values were imputed using median or mode, 

depending on variable type. To prevent target leakage, a 

thorough audit excluded all post-outcome variables 

prior to modeling. 

4.2 Modeling 

Distinct modeling strategies were adopted for VR and 

AR tasks, reflecting their respective prediction 

objectives. For the VR dataset, we implemented Logistic 

Regression with L2 regularization, Random Forest, and 

a Multilayer Perceptron classifier. For the AR dataset, 

ElasticNet regression, Random Forest Regressor, and 

Gradient Boosting Regressor were employed. 

Hyperparameters were optimized using nested cross-

validation to reduce selection bias. Where applicable, 

early stopping mechanisms were activated to mitigate 

overfitting and enhance generalization. The overall 

methodological workflow for both VR and AR datasets is 

illustrated in Figure 1. 

 

Fig.1: Methodological workflow for VR and AR datasets. 

 

4.3 Validation and Statistical Analysis 

Model performance evaluation was tailored to the 

problem domain. For the VR dataset, a stratified 

70/15/15 split (training/validation/test) was adopted. 

Calibration was performed using Platt scaling, and 

decision thresholds were selected on the validation set 

to maximize macro-F1. Evaluation metrics included 

ROC-AUC with 95% confidence intervals (DeLong 

method), macro-F1, overall accuracy, Brier score, 

calibration reliability, decision curve analysis, and the 

McNemar test for assessing paired classification errors. 

For the AR dataset, we employed a 5×10 repeated cross-

validation scheme to estimate mean absolute error 

(MAE) with mean ± standard deviation. Out-of-fold 

predictions from 5-fold CV were aggregated to construct 

predicted-versus-actual plots. To account for 
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hierarchical structure, mixed-effects models 

incorporating random intercepts for schools were 

estimated to derive intra-class correlation coefficients 

(ICC). Comparative performance analyses were 

supplemented with paired bootstrap confidence 

intervals. 

4.4 Fairness and Robustness 

Fairness and robustness analyses were conducted to 

evaluate subgroup-level consistency and resilience to 

perturbation. For VR data, subgroup performance was 

disaggregated by sex, age bands, and grade, with ΔAUC 

and ΔF1 computed alongside bootstrap confidence 

intervals. For AR data, ΔMAE was reported across 

comparable subgroups. Robustness was further 

examined via noise stress tests and feature ablation 

studies, whereby feature families were systematically 

excluded, and resulting changes in performance metrics 

were quantified with confidence intervals. 

4.5 Reproducibility 

To ensure reproducibility, all experiments were 

conducted within a Google Colab environment with 

fixed random seeds and explicitly pinned library 

versions. Research artifacts, including figures, tables, 

trained models, and a comprehensive data dictionary, 

are made available.  

 

V. RESULTS 

5.1 VR Classification 

Three classifiers were evaluated on the VR task (N = 

969). Logistic Regression (LR) achieved the best overall 

performance (macro-F1 = 0.623; ROC-AUC = 0.642). AUC 

precision was quantified with Hanley–McNeil: SE = 

0.0178, 95% CI [0.607, 0.677]. Test accuracy was 0.692 

(95% CI [0.663, 0.722]). Table 1 reports test 

performance for the three models. Logistic Regression is 

best (macro-F1 = 0.622; ROC-AUC = 0.642). 

Table 1: VR classification on the test split: accuracy, 

macro-F1, and ROC-AUC for LR, RF, and MLP. 

Model macroF1 ROC_AUC 

LR 0.622 0.642 

RF 0.532 0.515 

MLP 0.618 0.626 

 

 

Fig.2: ROC curve for Logistic Regression on the VR task (AUC = 0.642). 

 

The ROC curve in Figure indicates moderate separability 

consistent with AUC ≈ 0.64. 

Operating point analysis used a tuned probability 

threshold t = 0.30. The VR confusion matrix was shown 

in Figure 3. 
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Fig.3: VR confusion matrix at tuned threshold t = 0.30 (TN = 128, FP = 223, FN = 75, TP = 543). 

 

At t = 0.30 the confusion matrix was TN = 128, FP = 223, 

FN = 75, TP = 543. Derived metrics: precision = 0.709, 

recall (class-1) = 0.879, specificity = 0.365, negative 

predictive value = 0.631, F1 (class-1) = 0.785, F1 (class-

0) = 0.462, macro-F1 = 0.623, balanced accuracy = 0.622, 

MCC = 0.287. Class-1 prevalence was 0.638, and the 

predicted positive rate at this threshold was 0.791. 

Bottom line: the tuned threshold improves minority-

class detection by trading specificity for recall, which is 

appropriate when false negatives are costlier. VR 

threshold sweep was shown in Figure 4. 

 

Fig.4: Macro-F1 versus decision threshold for Logistic Regression; performance is stable for t ≈ 0.20–0.33. 

 

Threshold sweeping showed a macro-F1 plateau 

around 0.62 for t in 0.20–0.33, with degradation 

beyond ~0.40. Selecting t = 0.30 sits near the flat 

optimum while reducing FN. Figure 5 shows that LR 

coefficients prioritize usage and access variables, 

whereas RF importances emphasize age and weekly VR 

hours. 
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Fig.5: VR feature attribution. (a) Logistic Regression absolute coefficients. (b) Random Forest feature importance.  

 

Feature attribution aligns with model class. LR 

coefficients prioritize usage and access variables 

(Usage_of_VR_in_Education, Access_to_VR_Equipment). 

Random Forest importances highlight Age and 

Hours_of_VR_Usage_Per_Week, with smaller 

contributions from instructor proficiency and stress 

items. These patterns suggest both access/engagement 

and demographic cadence drive adoption signals in the 

VR label. 

5.2 AR regression 

Repeated cross-validation (5×10) compared ElasticNet, 

Gradient Boosting Regressor (GBR), and Random Forest 

(RF). 

 

 

 

 

 

Table 2. AR repeated-CV MAE results 

Model MAE_mean±S

D 

MAE_mea

n 

MAE_sd 

ElasticNet 1.812 ± 0.399 1.812085 0.399435 

GBR 3.745 ± 0.857 3.744717 0.857087 

RF 4.049 ± 0.842 4.048833 0.841901 

 

ElasticNet yielded the lowest error: MAE = 1.812 ± 0.399 

SD across 50 folds. Using fold means as independent 

estimates gives SE = 0.056 and a 95% CI of [1.701, 

1.923]. GBR MAE = 3.745 ± 0.857 (SE = 0.121; 95% CI 

[3.507, 3.983]). RF MAE = 4.049 ± 0.842 (SE = 0.119; 

95% CI [3.816, 4.282]). The margin between ElasticNet 

and tree models is large relative to fold variability. 

Figure 6 shows tight calibration of ElasticNet 

predictions. 
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Fig.6: AR predicted vs actual. (a) Out-of-fold, 5-fold CV. (b) Out-of-fold, 5×10 repeated-CV averaged. 

 

Out-of-fold predictions align with the 45° line, indicating 

good calibration and generalization for ElasticNet. 

Figure 7 shows ElasticNet shows a sparse signal 

dominated by ES_PM_H and ES_TM_H, with all other 

ES/SD features contributing near zero. 

 

Fig.7: AR top predictors by Random Forest importance. 

 

ES subscales dominate signal (ES_PM_H, ES_TM_H). 

Other ES/SD components contribute marginally, 

consistent with a sparse linear structure that ElasticNet 

exploits better than tree ensembles. 

 

VI. DISCUSSION 

In the VR task, a calibrated linear model demonstrated 

competitive performance while maintaining 

interpretability. Threshold tuning within the stable 

operating band was particularly effective, as it improved 

recall for the minority class without compromising 

macro-F1 scores. This highlights the practical advantage 

of balancing sensitivity and precision in educational 

applications where minority outcomes may carry 

greater importance. 
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In the AR task, ElasticNet regression showed superiority 

over tree-based models by effectively handling 

multicollinearity and addressing challenges associated 

with small sample sizes. Predictors related to access and 

usage of technology were strongly associated with 

learning improvement, while emotional and social (ES) 

subscales emerged as dominant factors influencing 

regression outcomes. These findings suggest that both 

technological access and psychosocial dimensions play 

critical roles in shaping learning outcomes. 

 

VII. THREATS TO VALIDITY 

Several limitations must be acknowledged. Construct 

validity is affected by the reliance on proxy outcomes, 

which may not fully capture the complexity of 

educational improvement. Sample imbalance in the VR 

dataset and limited sample size in the AR dataset 

introduce risks of biased estimates and reduced 

statistical power. Residual confounding may persist 

despite modeling efforts, particularly with factors such 

as age, access to equipment, and prior familiarity with 

VR/AR tools. Cohort drift over time further challenges 

the stability of findings. 

To mitigate these issues, we employed stratification, 

mixed-effects modeling, calibration procedures, and 

limited external validation. Nonetheless, caution is 

warranted when generalizing beyond the studied 

cohorts, and further replication in diverse educational 

settings is recommended. 

 

VIII. CONCLUSION 

The study demonstrates that logistic regression (LR) 

provides stable and well-calibrated predictions for VR 

outcomes, achieving an AUC of 0.642 and a macro-F1 

score of 0.622 within a practical threshold band. For AR, 

ElasticNet regression achieves superior performance, 

minimizing prediction error (MAE = 1.812 ± 0.399) 

while highlighting the importance of ES subscales as key 

predictors. Together, these findings suggest that 

relatively simple, interpretable models can deliver 

competitive results across both tasks. Moreover, the 

proposed pipeline is designed to be straightforward to 

adopt, extend, and audit, ensuring its practical utility for 

research and applied settings alike. 
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